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Synchronization is a phenomenon which is observed in man-made as well as in 
natural objects - electric generators, vacuum-tube oscillators, mechanical 
vibrators, pendulum clocks , musical Instruments and certain biological sys- 
terns. We Rive here a neneral formulation of the problem of synchronization 
of dynamic-objects and-Investigate their peculiarities; we aiso bnumerate 
the prlnclpal specific problems and applications. A mathematical apparatus 
Is indicated which Is useful for the study of a basic class of problems of 
synchronization - the problems of coordinated functioning of some almost 
ldentlcal self-oscillating objects, weakly coupled to one another. The ob- 
served tendency of such objects, of the most diverse sort, toward aynchro- 
nous motion finds It mathematical expression ln the fact that the governing 
system of differentlaf equations with perlodlc coefficients, as a rule, al- 
lows of a stable perlodlc solution. We give a short review of the work on 
the theory of synchronization of dynamic systems and we then enumerate the 
problems that have as yet not been solved. 

The phenomenon of synchronization may be described as follows: a number 
of man-made or natural objects, which in the absence of lntercoupllng oscll- 
late or rotate with various frequencies (angular velocities), begin to move 
with identical or multiple frequencies (angular velocltles) upon the appli- 
cation of at times very weak intercoupling. In the process, a definite 
phase relationship Is established between the respective oscillations and 
rotations. 

Particular cases of the phenomenon of synchronlzatlon have been known for 
a long time. Ch. Huygens at the beginning of the second half of the seven- 
teenth century established that a pair of pendulum clocks, beating dlfferent- 
ly, would synchronize themselves when they were attached to a thin beam in- 
stead of to the wall [ 1). 

Raylelgh observed synchronization In acoustical and electro-acoustical 
systems at the end of the nineteenth century’. Observing two organ pipes with 
holes distributed in a row, he found that Tor sufficiently small mistuning 
the pipes would sound in unison, I.e. there would occur a mutual synchroni- 
zation of the two self-osclllatlng systems. Sometimes the pipes caused com- 
plete silencing of one another. An analogous phenomenon was also observed 
by RayleIgh for two tuning Porks with electro-magnetic excitation. The forks 
were coupled together either electrically, mechanically by means of an elas- 
tic wire, or, finally by means of a box resonator [ 21. 

Later, approximately at the beginning of the present century, synchroni- 
zation phenomena were discovered ln electric networks and In certainelectro- 
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mechanical systems. Until recent times, the principal techncloglcal appll- 
cations of synchronization (synchronization of’ electrical generators and 
vacuum-tube oscillators) were associated with these Items. 

In 1947 - 1948 the phenomenon of the self-synchronization of mecanicaliy 
unbalanced vibrators, fixed to a single vibrating element, was discove;,edin 
the USSR 13 and 4] . It turned out that such vibrators, rep&sented in the 
simplest case by unbalanced rotors driven by any sort of motor of asynchro- 
nous type, would, under certain circumstances, operate synchronously, in 
spite of the possible difference of vibrator parameters and in spite of the 
absence of any kinematic or electric coupling between the rotors. 

At present time, self-synchronization, and likewise the related phenome- 
non of the sustaining of the rotation of unbalanced rotors by vibrational 
means [5 and -63, finds a very wide application in the new construction of 
vibrating machinery wlthln the USSR, as well as beyond its borders [7,5 and 
91 * 

The effect of vibrational excitation and sustaining of rotation is, in 
essence, also used in nuclear technology In the design of cyclic acclerators 
of charged particles [P] . In the Soviet Union a number of means of forced 
electrical synchronization and phasing of rotations of vibrators have been 
suggested [lo and 11. 

Finally N. Wiener has supposed that the phenomenon of synchronization 
lies at the basis of the excitation of alpha-rhythm of the brain, and iikc- 
wise he gives a far-reaching suggestion of the role of this phenomenon in 
the processes of self-organization and self-reproduction of certain biologi- 
cal objects, in particular, in the processes of the evolution of malignant 
tumors [121. 

The technological problem of synchronization Is a particular case of h 
more general problem, the guaranteeing of the concordant functioning of a 
number of oblects. In this connection, in certain cases synchronization and 
sdeclflc phasing takes place by virtue-of the natural ~oupilng (In the wide 
sense of the word) which 1s already present in the system. Thus, for example, 
in the uroblem of the synchronization of generators of electrical or mechani- 
cal oscillations, synchEonlzat.ion Is frequently realized because of the pro- 
perties of the system itself - the generator and load. This type ofsynchrc- 
nlzatlon is usually called self-synchronization. In other cases, the- effect 
of synchronization and phasing Is obtained by means of the introduction of 
auxiliary synchronizing elements (forced s~chronizatlon). 

The most important examples of problems of synchronization are: 

1. To obtain the conditions of synchronization and proper phasing of 
mechanical vibrators. This Is one of the main problems that arises ln the 
design of new types of modern vibrating machinery, as sifters, conveyers, 
crushers, millers, etc. 

2. To Investigate the conditions of stability In the paral!el operations 
of a number of electrical generators on a common load. This problem 1s of 
particular significance In connection with the integration of complicated 
electrical-power systems. 

3, To obtain the conditions of s~c~onlzation and definite phasing of 
self-oscillations excited in a number of vacuum-tube oscillators. 

To the same class of problems Belong the following: the investigationof 
the peculiarities of the motion of rotating elastic shafts wlth unbalanced 
disks, the dynamic analysis of special automatic balances for the compen- 
sation of unbalanced high-speed rotors, the study of the behavior of a num- 
ber of unbalanced machines fixed to a common foundation or to common sup- 
porting structures connected between themselves, the investigation of the 
principles of operation of a number of acoustical Instruments, in partlculsu’ 
the peculiarities of the sound of certain musical instruments, and the in- 
vestigation of certain biological phenomena. 

The short review of the history and technological use of synchronizativn 
that has been introduced shows that everywhere where there are oscillatory 
processes the problem of synchronization arises sooner or later. 

We present below an attempt to examine this problem in a certain general 



formulation, 
the behavior 

The problest of synchronizatfon of dmmsicel BYStems 241 

In other words, we attempt to study the general properties of 
of Interconnected various nature objects of the same type. 

1, 0ortal.a problrmr In thm 6ynahronlortion or dymn30 objeotr. 
1. Synchronization of mechanical 

vibrators. The problem of the synchronlzatlon of mechanical vlbra- 

tors is one of the main problems In the theory of vibrating machinery. We 

formulate this problem for the simplest possible case, the self-synchrmization 

of unbalanced vibrators fixed to an absolutely rigid platform having one de- 

gree of freedom (Pig. 1). 

The vibrating ele- 

ment of the machine 1 

frigid platform) Is 

connected to an lmmm- 

ble foundation 2 by a 

system cfplanar elastic 

supports 3 (springs). 

The axes cf the springs 

are assumed to be in- 

extensible and there- 

fore the platform can 

translate only in a 

direction perpendicular 

to these axes. On the 

Fig. 1 platform are fixed a 

certain number k of 

unbalanceci vlbrators 4 in the form of unbalanced rotors, whose axes are per- 

pendicular to the plane of osClllatlon of the platform and which are rota- 

tionally driven by some sort of motors of asynchronous type. The state of 

the system Is characterized by the deflection of the platform x from a po- 

sition of static equllibrlum and by the angle of rotation of the rotors of 

the vibrator mS t measured clockwise. 

The differential equations of motion of the system have the form [3] 

Here L, (9,‘) is the rotational moment of the motor; R, (cp* ‘) is the mo- 

ment of the forces resisting rotation of the rotor of the vlbrator; m,, t, 
and 1, are, respectively, the mass, eccentricity, and moment of inertia 

around the axis of rotation of the rotor oP the 5th vibrator; M is the mass 
of the system, kX is the coefficient of viscous resistance, oX is the ri- 

gidity of the elastic system, g is the acceleration of gravity, x is the 
angle between the direction of the x-axis and the horizontal. 
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The problem consists of establishing the conditions under which all the 

vibrators will rotate with the same mean absolute angular velocity, in spite 

of the absence of any direct connections between their rotors,the different 

parameters characterizing the vibrators and the forces acting on them. In 

other words, what is Involved is a clarification of the conditions of ex- 

istence and stability, and, llkewlse, the finding of the (even approximate) 

solutions of the system (1.1) of the form 

cps = as [cot + ‘Ic1, bt)l / (8 = 1,. . a, k), 5 = 3 (cot) W) 
Here ui is the absolute value of the mean rotational velocity of the 

vibrators, 11‘ (UJt 1 and x(d) are periodic functions of time t with peri- 

od m/m, and each of the quantities u. is either equal to 1 or -1; the 

first case corresponding to a rotation of the sth vibrator In a positive 

direction and the second case to a rotation in the negative direction. 

A motion of the type (1.2) we shall call synchronous. Sometimes our in- 

terest Wi11 also be in the investigation of multiple-synchronous motion when 

the mean value IT, l 1 Is equal to n, UJ , n, being a positive Integer. 

The modulus of the angular velocity of the synchronous rotation UI is not 

known beforehand and is subject to determination in the process of solving 

the problem. 

It is not hard to see that if in Equations (1.1) one goes over from the 
dependent variables m, to new variables $, in accordance with Formulas 
(1.2) and to a “nondimensional time” 7 = wt, then the problem reduces to 
the establishment of conditions of existence and stability of periodic (with 
period 2n ) solutions of a system of k + 1 nonlinear equations of the 
second order with periodic coefficients. In its general form this problem 
is extremely complicated. However, under specific assumptions [3] one may 
introduce a small parameter Into the system and by this means essentially 
simplify the Investigation, the transformed system being represented in the 
form 

(s = 1, . . ., k) 

(1.3) 

(1.4) 

kx = pk,*, k, = k,* + kc,“, 

p is a small parameter and where, as below, we denote differentiation with 
respect to 7 I ~6 by means of a prime. In addition, in obtalning Equa- 
tions (1.3) we have taken 



which corresponds to an assumption on the nearness of the motion of the vi- 
brators to uniform rotation, i.e.oon the smallness of I,' as compared to 
unity. Usually k, * > 0 and k, > 0 . 

An important property of the system (1.3) is the fact that for p = Q the 

first k equations (the equations of motion of the synchronlzable objects) 

turn out to be independent of one another ) and likewise of the latter equa- 

tion of (1.3)+ A second property is the presence of a k-fold root P = 1 

in the characteristic equation of the variational system corresponding to 

solutions of the generating system. In this cfrcumstance it is not dlfflcult 

to verify that simple elementary divisors correspond to the multiple roots. 

These two properties are Inherent in many problems of the synchronization of 

dynamic systems (see below]. 

Fig. 2 

The problem that has been 
posed may be generalized in an 
essential way, so for example 
the vibrating machine (Fig, 21 
may be not one but a number 
of rigid bodies 2, connected 
together by an immovable foun- 
dation 1, by certain geometric 
eoupllngs 2, and likewise by 
elastic 3 and damping 4 elements. 
Among the vibrators there may 
be not only the simple unbalanced 
vibrators 5 described above, 
but also "planetary vibrators" 
6, and the axes of the vibrators 
may be arbitrarily oriented in 
space. Sometimes it is of in- 
terest to investigate cases 
where the aforementioned rinid 

bodies may collide during the motion. However, at all times the matter Gt 
hand is the clarification of the conditions of existence and stability of 
motions of the type (2.2), that is, of SyMWnOu5 motions. 

2. The dynamics of an automatic balance 

for the equilibrsting of rotating rotors. 

One of the possible forms of the balance cl3 to 151 is shown schematicalfy 
in iQ+3@, Onto a flexible rotating shaft 1 a disk 2 is attached, its center 

of gravity C does not lie on the axis of tha shaft A@#. The disk contains a 

cylindrical or toroidal cavity which fs filled with oil and whose axis coin- 

cides with the tangent to the axis of the shaft at the point of support Q. 

A few balls 3 ax-e placed Inthe cavity. Un&er specific conditions they arrange 

themselves in the rotating disk in such a way that they compensate the un- 

balance of the disk and thereby eliminate oscillations of the shaft and the 

transmission of dynamic loads to its bearings. 

The equations of motion of the system have the form 



(The above equations were introduced ill [15] in other nctation). 

Here (see Fig. 3b) x and y are the coordinates of the center of the 

disk 3, in a fixed system of axes XCY , whose origin is at the point of 

intersection of the plane of the disk with the axis of the bearings; US i:: 

the angle between the straight line joining the center of the disk and the 

center of the s ball and the direction of the x-axis, measured ciockwise; 

6 , m and :W are the masses of the disk, the ball and the entire system. r’cu- 

pectively; r is the eccentricity of the disk, -8 is the distance from thf 

center of the balls to the axis of the shaft; U. is the angular3 vrlocity 01’ 

rotation of the shaft; 9, and ,8 are the coefficients of .;iscci;:: I’esi;‘Lan?;. : 
R 

Fig. 

c is the stiffness of thy :hai’t iri 

bending with respect t; a f8zncV ap- 

plied at the point C: . 

The ;~roblem reducec t? t:ii: zla:.i- 

fication of fhe condit.ions of crxiL!z- 

ence an5 stability of the :ioluzio:i: 

of the sys~eir, (i-6) of tht form 

rps = at + $8 (4 (s = 1,. . . , k), 

5 = 5 (cot), y = y (4 (4.7) 

3 

Here Q, , x and y are periodic functions .of the time t with pei,i& 

2ll/u! . In this case,of particular interest are those colution: of (1.7) in 

which 5 (w t) z y(ot)zO, that i-, D solutions corresponding t,z thz .:elf-equ~- 

libration of the system, when oscillations of the shaft are absent. 

Along with the great similarities in the formulation of the prtsent and 

prevlous problems there are also differences, which are associar;es .%it:? :lli, 

fact that the initial equations (1.1) for the problem of self-synchronizati~:l 

were autonomous, whereas the system (1.6) is nonautonomous. In the flrzt ca::c 

the frequency w was assumed to be unknown beforehand, while in the recvnd 

case it was taken as given. We note, however, that this difference may Le 
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eliminated if one assumes that the angle of rotation of the shaft ‘9 is not 

given and if cne attaches to the system (1.6) the equation of motion of the 

motor rotating the shaft. 

ILf in Equations (1.6) one uses Formulas (1.7) to pass from the variables 
Q, to new variables ), an4 the nondimensional time T = utt, then this system 
may be represented in a form which Is analogous to the systems (X.3) for the 
problem of the self-synchronization of vibrators 

whereby the quantity g can, as before, be considered as a small parameter. 
This, clearly, corresponds to an assumption on the smallness of thedeflection 
of the center of the disk x and g in comparison with the length of 19 , 
and likewise on the smallness of the coefficient @‘Mw which characterizes 
the resistive force in the oscillation of the disk. 

Hence the problem reduces to the clarification of the conditions of ex- 
istence and stability of periodic (with period 2rr) solutions of equations 
(1.81, particular interest being focused on the solutions x z I/ z 0 . 

3. Bending -torsional oscillations of a 

rotating shaft with unbalanced disks, 

We consider a system consisting of a mlaltiply-supported shaft with an arbi- 

trary number k of statically unbalanced disks (Fig. 4~). We shall assume 

that in its motion the shaft may perform not only bendlng but torsional 

oscillation; that is, we shall assume that the stiffness in torsion of the 

various portions of the shaft is finite. The shaft supports may be either 

rigid or flexible with nonidentical stlffnesses in various directions. Some 

of the disks may represent rotors of the motor which drive the shaft In ro- 

tation. 

Fig. 40 

Let G;c&t be a fixed system of rectangular coordinates, the -F-axis of 

which is directed along the axis of the shaft bearings. Small oscillations 
of each disk are specified by Cartesian coordinates xr and y, of the point 
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Of intersection of the planes of the disk with the axis of the shaft cc,and, 

llkewlse, by two Euler angles O, and 8, , chosen in accordance Fig. 4 b . 
The rotation of each disk is specified by the angle of its own rotation Q, 

If gyroscopic terms are neglected and the forces of gravity are not taken 

into account, then the differential equations of motion of the system may be 

represented In the form 

(1.20) 

A,a,” + 5 (C,‘jD)aj + c~P)x~) =L: QSca) 
j=l 

Here m,, E, , A, and rr are, respective- 
ly, the mass, the eccentricity, and theequa- 
torial and polar moments of inertia of the a 
disk; c,,++~ is the stiffness under torsion 
of a portion of the shaft between the s and 
and the s + 1 disk, whereby co1 = ck, k+l= 0; 

are respectively.the stiffnesses of the shaft 
under bending with account taken of the pli- Fig. 4;5 

ability of the supports; K, Is the value of 
the angles cp, , under which the elastic twisting moments over the span of 
the shaft, are equal to zero (these angles, determined with accuracy up to 
the constant rotaticJn x0, characterize the directions of the eccentricity 
vectors c, 
and Q, 

= O’C, of the disks for the untwisted shaft); Q fr), Q fe, Q (a) 

@’ are fbrces and moments of internal and external re%ista&e to ’ 
oscillations of the shaft which may depend on all of the generalized coordi- 
nates and velocities of the system, the coordinates rp, and the velocities 
cp# * entering into the expressions for 8 only in the form of differences 
cp*- rpj and o;- ‘9,’ ; L, and i), are, respectively, the rotational moments 
of the motors and the moments of forces resisting tc the rotation ( it is 
usually sufficient to assume that these moments are functions of cp, - cp 

and likewise, are possibly periodic functions Q wi h 4’ 

The problem consists of establishing conditions for existence of stability, 

and likewise of calculating with some degree of accuracy the synchronous 

motion of the system, that Is motions of the form 

(1.11) 
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Here h , x, , pa , a, and 8. are periodic functions of time with period 

al/W . In this case, as in the problem of the synchronization of vibrators, 

the value of the synchronous frequency w , generally speaking, is not known 

beforehand and must be determined in the course of the solution of the prob- 

lem. As previously, a transformation to the variables $, and a passage to 

nondimensional time 7 - @i; reduces the problem to the Investigation of 

periodic (with period 2s) solutions of a system of nonlinear equations whose 

right-hand sides are periodic functions of 7 with the same period. 

the present case a small para- It Is also not difficult to see that in 

meter Is completely naturally Introduced. 

4. Self- synchronizati on of pendulum 

clocks suspended from a movable foun- 

datlon (t h e problem of Huygens). As it has 

already been mentioned, the phenomenon of synchronization of dynamic systems 

Fig. 5 

was apparently first dis- 

covered experimentally by 

Ch. Huygens just In the case 

of the self-synchronization 

and phasing of the movements 

of two pendulum clocks sus- 

pended from a single thin 

beam. If we restrict the 

model of the clock motion to 

a single degree of freedom 

and if we assume that the 

clocks hang from an elasti- 

cally suspended rigid plat- 

form having one degree of 

freedom (Fig. 5), then the equation of motion of the system coincides exactly 

with Equation (1.1) of the problem of self-synchronization of vibrators. In 

the clock problem the specific expression for the driving moments L, and 

the resistive moments .@, will only be changed. Under the assumption stlpu- 

lated above, these moments are to be considered dependent on the angle of 

rotation of the pendulums ‘p, and the velocities cp,* . The differential equa- 

tions of motion of the clock-platform system can be written in the form 

k 

Mx” + kxx' + c,x = x m,e,rp,** cos x 
(1.12) 

(==I,..., A) 

where, in contrast to the problem of the vibrators, the angles of rotation 

of the pendulums are reckoned from the vertical and are considered small. 

BY Q2, = ~dBm,ge, / I, we denote the frequencies of small free oscillations 

of the pendulums under the conditions that the points of support are immova- 
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ble (the "partial frequencies" of oscillations). 

The problem COnSiStS of the ciarlficatlon of the conditions of existence 

and stability of periodic oscillations of the pendulums with common frequency 

w , taking Place In spite of a possible difference in the partial frequencies 
n, of the separate pendulums, in the moment8 of inertia I, , and in the 
moments L, and R, . In other words, we are concerned with the lnvestl- 

gation of the conditions of existence and stability of periodic solutions 

of Equations (1.12) with a period T = 2~/i~ which Is unknown beforehand and 

is subject to determination in the process of solving the problem. We are 

also interested in computing (even though approximately) the actual peri- 

odic solutions. 

Proceeding from the observations of Huygens, we may expect that synchro- 
nization of the pendulums will be possible only under conditions that the 
partial frequencies R, differ slightly from one another. Taking into ac- 
count this circumstance and considering also the possible orders of smallness 
of the separate quantities, 
a small parameter u , 

it is natural to introduce into the system (1.12) 
which puts it into the form 

where 

k, = &*, R,z = cl2 (1 - X8) 

and fog R we may take either one of the R, or some arbitrary average of 
the Q, . 

We note that for v = 0 the first k equations become independent and the 

system (1.13) allows of a family of periodic soltitlons with period 24w, 

depending on the 2k arbitrary constants. In this case, the characteristic 

equation of the generating system has bt least the k-fold root p= exp(2ntR) 

and k-fold root p=exp(-2ntn). As above, as a consequence of the independence 

of the first k equations for p= 0, simple elementary devisors correspond to 

these roots. 

5. Synchronlzatlon for the parallel 

operation of electrical machinery. We con- 

sider the formulation of the problem of the parallel operation of a certain 

number k of generators on a common load. The state of the s generator 

will be characterized by a single "rotational" coordinate, i.e. the angle of 

rotation of the rotor wi-n respect to the stator up, , and likewise by a set 

of "oscillatoryn state coordinates x1(S) , . . ., L?_T,.~@), which may be electrical 

as well as mechanical quantities. 

First of all, let us assume that every generator operates on independent 

loads A, , whose state is characterized by the state coordinate8 ul@), . . ., 

up (Pig. 6u) f Then we shall have k independent autonomous system8 in 
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which under specific conditions there will be motion of the form 

CPS = W + $* C&t), Xj(‘) = Zj:jfsf (CO*t)* j Up(') = Up(*) (CO&) (l-15) 

(i=f I'.., r‘; p=l,..., vS; s=l,..*, k) 

where $, 3$) and UP(‘) are periodic functions of time t with the period ~TT/UI,, 

and each of the W. is a constant which we may call the partial frequency of 

the generator CGFreSponding to a given load A,. Because of nonidentical 

b) 

Fig. 6 

lcads, inaccuracy in manufacturing, 

and also because of Imperfections In 

contrcla, the frequencies UJ, for the 

various generators, generally speaking, 

will be different. 

We assume now that all of the gene- 

rators are switched in parallel to 

operation on a single load R,the state 

of which Is characterized by the state 

coordinates u1 , , . . , u,, (Fig .6b) .Then 

the problem consrsts of finding con- 

ditions under which, notwithstanding 

the possible differences In partial 

frequencies u,, a rating with a com- 
mon synchronous frequency u1 is established in’the Integrated system. In other 

words, in the present case we are Interested in clarifying the coditions for 

the existence and stability of motions of a combined system in the form 

Vs = at + $S W>, C?Zj@) = S$s) (of), up = Up (ot) (1.16) 
(+I ,**., r*; p=t,.:., v; s---1,..., k) 

where +, , xj*i and u 0 are periodic functions of t with the common period of 

m/w, and where w is a constant whicn Is not known exactly beforehand, In 

other Germs, the problem of synchronization arises here also*. 

Here we do not give the differential equations of motion of the system 

being consi,Aered. In the general case they are so complicated that their 

derii atloLl represents a nontrivial problem. In various cases of practical 

interest, these equations, written as a rule in terms of the functions $,, 

XJ1.S and up, are given, for example in [ 16 to 181. 

In terms of the variables indicated, the problem of the parallel operation 

of electrical synchronous machinery reduces, as in all of the problems examined 

above, to the study of the conditions for the existence and stability of 

periodic solutions of a certtln system of differential equations whose right- 

hand sides are also periodic functions of time with the same period. 

* We note that the term “synchronization” is often used in electrical engi- 
neering in a different sense than in the present paper. 
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6. Synchronization. of vacuum-tube 

oscillators. The problem of the synchronization of vacuum-tube 

oscillators is of great significance in radio technology and in television. 

As an example we formulate the problem of the self-synchroniz!atlon of the 

van der Pol type oscillators under the assumption that they are coupled to- 

gether inductively. The differential equations of motion of the system will 

have the form 

(s = 1) . . , k) (1.17) 

Here n,> 0,)-l> 0 and a,> 0 are constants. For bII = 0 Equations 

(1.17) pass into k independent nonlinear equations, known under the name 

of the equations of van der Pol. Such equations have a periodic solution of 

period Ts= 2n [I -/- 6(p)] / Q,, where 6(O) = 0 ; therefore In the case of 

absence of coupling between oscillators (b,, = 0) each of them generates oscl 

lations in the steady state operational condition whose frequencies are 

(11~ (p) = & / 11 + 6, (p)], which,generally speaking, are different. These 

frequencies may be called the partial frequencies of the oscillators. 

l- 

As before, the basic problem will be the establishment of conditions under. 

which all of the coupled oscillators operate with a common frequency U! (un- 

known beforehand), notwithstanding the possible differences In the partial 

frequencies UJ,(~) . In other words, the matter again concerns the finding 

of conditions of the existence and stability of periodic solutions of the 

system (1.17). 

If the frequencies n.= w,(O) differ slightly from one another so that 
one may set .Qsz= Cl2 (I- px,), then equations (1.17) reduce to the form 

x,.+ Q’x, = pas (x,‘, xs; Xl”, . . .I T,<“) (s = I, . . ., k) (1.18) 

where 
k 

pDs (x,‘, xs; xl.‘, , . ., xk”) = p a, (1 - zs2) xs’ + x,R2r,+ 2 bsjxj” 
I 

(1.19) 
j=l 

The equations (1.18) are a quasilinear, autonomous system which is analo- 

gous to the first kth equations (1.13) of the Huygens problem. As before, 

the generating system for (1.18) has a periodic solution of period m/n , 

depending on the 2k arbitrary constants, whereas the character,istic equation 

of this system has two h-fold roots p = exp (+hCiQ) with simple elementary 

devisors. 

2. The grnrrrl formulrtlon of the problem of oynohronlzrtlon. In the 

general form, the problem of the synchronization of dynamic system may be 

formulated in the following manner. 

We consider a certain number k 3f dynamic objects asst;%led in one single 

system (Fig. 7). Let the motion of the sth object be defined by a r,-dlmen- 

slonal vector xcs) = [x,cs) , . . ., zrs(s) ] (S = 1, . . ., k), the components of 

which JC/') will be coordinates of the object in the state space of the system. 
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The motion of the system as a whole will be specified by the aggregate of 

the vectors #‘introduced above and by the v+Lmensional vector U = [u, , . . 
. . ., u,] which characterizes the connections between the objects. Hence, the 

State space of the system has 1 = ?“1 + . . . + rk -/- V dimensions. 

Let the motion of the system under consideration be described by differen- 

tial Equations 

x’(s) == X’S’ (#)) + F@) (x(1) , - * *r xCk), u) (s==l,.... k) (2.1) 

where 

are, respectively, r, 

u’ = u (x(l) ) . . *, X(k), u) 

X (S)] FfS) -_ [@, **, *s 1 . . .) Fps(s)l, u = [U 11 * * * , U”l 

and v-dimensional vector functions, satisfy?ng extremely 

general requirements under which the system (2.1) wi!l be dynamical, and 

certain special requirements which will be indicated below. The vector- 

functions 8, and U , characterizing the connections between the specific 

objects will be called the constraint functions. 

Fig. 7 

From the block diagram given in 

Fig. 7, and likewise from an exami- 

nation of Equations (2.1), it is seen 

that each of the objects may be con- 

nected to the remaining objects both 

directly and through a system of con- 

straints, the state of which is charac- 

terized by the state coordinates up. 

Further, it is seen from the equations 

that the coordinates xl”’ which specify 

the state of objects and the coordl- 

nates 
uP 

of the system of constraints enter, in essence, into Equations 

(2.1) on a completely “equal footing”. The specific character of each group 

of variables In many problems of synchronization will be clarified below. 

We shall consider the basic problem of the theory of synchronization to 

be the establishment of the conditions for the existence and stability of 

solutions of Equations (2.1) in the form 

Zj@) = Gj@) lcpot + yjfsf (wf)] (i = 1,. . I rs; s = I, * . . , k) (2.2) 

up = G, fqpt f Ep (or)1 (p=l,..., v) 

where W. is a positive constant, ~~*‘(~t) and ~P(uJ~) are periodic functions 

of rut with the period 2~ ; gi” and Pp are numbers each of which may be 

either zero or unity. In the first case we shall conditionally call the 

corresponding coordinates XI’) or oscillatory, in the second case we 

shail call them rotational. l3y cr/:Pand up we shall denote numbers whicn 

may arbitrarily be either +1 or -1 . 
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To solutions of the form (2.2) there correspond either oscillatory motions 

or motions that are uniform on the average in which each coordinate has the 

same frequency (linear or angular velocity) & . In the sequel we shall call 
such motions synchronous. 

We shall now concretely specify the right-hand sides of Equations (2.1). 

We shall assume that the functions Xj@), Fjfs’, u, depend on their arguments 
In such a way that upon substitution for x/‘) and up in accordance with 
Formulas (2.2), these functions will become periodic functions of the”non- 

dimensional time” 7 = urt with period 215 . 

The last condition is not necessary for the existence of synchronous mo- 

tion in system (2.1), however, it is fulfilled in all concrete problems of 

synchronization known to us and It essentially simplifies their solution. 

Hence, in what fol.lows, this condition will be assumed to be satisfied. Ue 

note that for this condition to hold it is sufficient that Xi)) and ri: be 

periodic functions of Zhe rotatlonal coordinates with period ti , and like- 

wise,_that they be functions perhaps, of the diff erences5j(s)~$8) - CS~(~)I,~~~“), 

CS$L~ - 3,/l,, bj(“~j’8’ - o&~, where Zj”)t L&(~), Uj and U, are rotational CO- 

ordinates, 

Using Formulas (2.2) and passing in Equations (2,l) from the variables 

X, U and $ , to the variables y, v and 7 = wt, we obtain a system of 

the form 

Y (4 _~ Y(S) (y’s’, qj + #@f (y’l’ ) . . ,) y’“‘, y, r> @=I,..., k) 
(2.3) 

v’ = v (y(l) , . . ,, p’), v, z) 

where in correspondence with the assumptions made on the character of the 

vector -functions X@),F(“) and U, the functions Yes’, CD’“’ and V will be 
periodic with respect to the nondimensional variable 7 with period 2~ . 

Thus the basic problem of synchronization reduces to establishing con- 

ditions on the existence and stability of periodic soiutions of the system 

of equations (2.3) with period 2n . 

In addition to the ;?roblem of synchronization that has been formulated 

above, the following problems are also often of interest. 

1. The actual calculation of the synchronous angle or l&Lear velocity 

(frequency) %, and LL&wlse the solutions of (2.2) which correspond to the stable 

synchronous motions. In many cases one may restrict himself to the determi- 

nation cf average values over a perlod & of the functions F’(uJ~) and 

v&t), that is the quant;ties 

a@’ = & 5 yf”’ (T) dz, 
1 s+= 

a=% 
I () 

v 7 dz (2.4) Y 
0 0 



and likewise to the maximum deviations 1 Jjjfs) (Z) - CZjfs) I,,, and ] VP {IT) - a, I,,, 

from these average values. 

2. The choice of a system of constraints under which the existence and 

stabllit:r of synchronous motions of (2.2) of.the given form Is guaranteed. 

This problem, which may be called the problem of synthesis, Is in a certain 

sense the inverse of the basic problem. 

Also, sometimes of Interest Is the extremely difficult problem of deter- 

mining a region of initial values (the ‘capture region’) ln the phase space 

of the system such that Sor subsequent times the motion will approach the 

specified synchronous motion without restriction. 

What was indicated above was related to the problem of simple synchroni- 

zation. However the more complicated problem of multiple synchronization 

also arises in a number of applications. The question then is not rotation 

or oscillation with a common angular velocity (frequency), but with common 

velocities (frequencies) of the type n,ru, where n1 Is an Integer, generally 

speaking, different for the various components of the vectors tie and u . 

One of the most important classes of problems of synchronization is formed 

by problems of synchronization of selS-oscillating objects. AS a rule these 

objects areofthe same type and each Is Isolated from the rest (the constraint 

functions F(S) and @@I in Equations (2.1) and (2.3) are absent) and under 

specific conditions may perform motions of the type (2.2) which are charac- 

terized by a certain frequency (angular or linear velocity) UJ,. It is na- 

tural to call the quantity U, the partial frequency (velocity) of the obJect. 

The Jroblem of synchronization consists of finding the conditions under 

srhicb all the objects upon assembling Into a single system may perform mo- 

tion of the same type but with an identical frequency (velocity) w or like- 

ulse with frequencies (velocities) of the form n,m . 

Depending on the character of the formulation of the problem of synchro- 

nization of self-oscillating objects or systems containing such objects, it 

is necessary to distinguish between the problem of internal (autonomous) 

synchronization and the problem of external (nonautonomous) synchronization. 

In the first, more general case, to which the above formulated problem 

of synchrcnlzation is related, all of the objects to be synchronized are 

considered as elements on an equal footing of a single autonomous dynamical 

system. In this case, the Srequency of synchronous motion is established 

as a result of the interaction of all of the elements,oS the system. The 

right-hand sides of equations (2.1) in this situation do not contain the 

time t In explicit form, and the value of the synchronous frequency w is 

not hewn beforehand and is subject to deters&nation in the process of sol- 

ving the problem (see Subsections 1 and 3 to 6, Section 1). 



In the second case it is assumed that one of the self-oscillating objects 

that is to be synchronized 1s significantly stronger than the remaining ob- 

jects and therefore its motion is to be considered Independent of the charac- 

ter of the motions of the remaining elements of the system. The singled-out 
object acts on the other elements of the system and therefore the frequency 

(or angular velocity) of the synchronous motion is assumed to be given at 

the outset and is unchanging. 

In such approach to a problem, the initial system (2.1) becomes nonauto- 
nomous and thereby -Its order Is lowered (see Subsection 2 in Section 1). 

It is not hard to see that all of the concrete problems that were con- 

sidered in Section 1 are particular cases of the general problem that has 

been formulated here. 

In conclusion we note that in a number of applications the study of the 

synchronization of .a system with distributed parameters is of interest. In 

this case, a number of equations (2.1) are partial differential equations. 

Clearly, all that has been indicated above may be also extended to such a 

system df equations. 

3, Bilrrio prouli&ritirr of the problrmu of rynahronlert~on, The dlffer- 

ential equations of the problems of synchronization, as a rule, are essenti- 

ally nonlinear. However it is often possible to introduce into them a small 

parameter. This allows one to apply methods from the theory of periodic 

solutions which was developed by A. Poincare and A.M. Liapunov. 

One can point out two important groups of problems of synchronization in 

which the method of a small parameter can be effectively applied. 

In the first group are problems of synchronization involving objects which 

are WweaMyW coupled. These are the very problems of interest in application. 

On the one hand, synchronization is,technically the most straightforward 

and most economical by means of 'weak' Interconnections. On the other hand, 

if It is necessary to apply I1strong' Interconnections between some of the 

objects then, as a rule, the system may, after the application of the lnt;r- 

connectlons, be regarded as a single system for which the problem of synchro- 

nization does not arise. Thus, for example, two mechanically unbalanced 

vlbrators,whose shfts are connected by means of drive gears with rlgld inter- 

mediate elements that are between the vibrators and the gears, form, practi- 

cally speaking, a single two-shafted vibrator. 

Host of the concrete problems of synchronization examined in Section 1 

may be put into the category of synchronization with weak coupling, as well 

as many other problems. 

In the case of objects with weak coupling, the basic equations (2.1) may 

be represented in the form 
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x’(*) = X@) (x’“‘) $ @Jo’*’ (x’“, , . . , xtk’, u, p) (s=f,..., k) 

u’ = u* (x(1) , . * . , X(h), u, p) (3.4) 

or In terms of the variables y@), v and Z = wt into the form 

yt f*f = yw (Ye), r) + pOocs) fy’l’, * . . ) yCk), Y, r, p) (s=I,..., k) 

v’ = v* (y(l) , . . * ) y’@, v, z, p) 
(3.2) 

-Here F’(*‘, U*, (go(*) and V* are vector-functions of the same class as 
F(8) , U,@and V in Equations (2.1) and (2.3), whereby p(*), U*, W@) 
and V* are likewise functions of a small parameter ~1 which it is suf- 
ficient to consider an analytic for p in the interval 1~1 c uo, where 

&>O. 

An extremely wide class of problems is formed by proble.ns of synchro- 

nization of identical or almost Identical objects which are Weakly coupled 

to one another. In this case, the functions X’“’ and Y@) in Equations 
(3.;) and (3.2) do not depend on the index s . 

Equations (3.2) which have been Introduced for the study of periodic so- 

lutions and whose solution in the present case gives the solution of the 

basic problem of synchronization, have the property that in the correspon- 

ding generating system each of the first k equations are independent. 

After the vectors .yO '*I have been determined from them, the vector vO may be 

found from the last equation. This circumstance essentially simplifies the 

solution of the generating system; however, It leads to a number of compli- 

cations in the study of the complete system. The fact Is that the generating 

system in synchronization problems %llows not of a single solution but of a 

whole family of periodic solutions 

~$1 = ~$1 (T, a,, . . .,qJ (i = 1, . . . , r*: s = 1, . . . , k) (3.3) 

which depend on a certain number p of arbitrary parameters o, . In this 

case, p is equal to or greater than the number of objects k , which Is 

not hard to see. In the generating approximation the equations of motion 

of the objects are independent, and if they have a periodic solution gto(7), 

then, in accordance with the autonomous nature of each of Equations (3.1) 
and in accordance with (2.2), they also allow of the periodic solutions 

y!s) (r + @as) + @)OCXS, where 
70 I a I are arbitrary constants. 

It is known that the presence of solutions of the type (3.3) In the gener- 

ating system corresponds to a singular case wherein the Poincare determinant 

goes to zero together with its minors up to order 1 - p + 1 , inclusively 

Cl91 . In this case not only the study of the existence, but of the stabi- 

lity of periodic solutions, becomes more complicated since, by virtue of the 

theorem of Polncare, the characteristic equation for the system correspon- 
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ding to the generating system and generating solution always has a p-fold 

root which is equal to unity. Therefore, the origlnalrapproxlmation to the 
roots of the eharacterlstlc equation does not answer the question of stabi- 

lity and it is necessary to study higher order approximations. 

The presence of multiple (or near by) roots in the characteristic equa- 

tion of the synchronization problem may be associated not only with autonomy 

but with the presence in the system of a number of identical (or almost iden- 

tical) objects. We note also that in systems with weak coupling, the gener- 

ating equations of motion of all of the objects are independent. Hence, the 

characteristic equation will disintegrate Into not less than k independent 

equations and the elementary devisers corresponding to each root will be 

simple only If each of the equations (3.2) separately has simple roots. 

There also exists another category of synchronization problems in which 

the method of small parameters may be effectively used. These are cases in 

which the study of synchronization may be restrlcted to conditions under 

which the object performs motions that are close to some known motions. 

So, for example, a number of problems in the synchronization of vibrators, 

self-balancing machines, bendlng-torsional oscillations of shafts and the 

synchronlzatlon of generators may often be sufflclently solved under the 

asmmption that in synchronous motion all of the rotating coordinates (an- 

gles of rotation of the rotors) change with time in a neighborhood of an 

equlllbrium rotation with the synchronous angular velocity ~1 . 

4. llhort rwieu of workr on thr theory of rynohron%mtfon of dgnmio 
ayrteau I on mm@ unoolvoa ~robloma* 

1. Mathematical i n v e s t i g a t i o n s . A systematic 
study of the general case when the generating solutdons depend on a number 

g 
of arbitrary parameters a, was begun In the monograph of Malkin [ 191. 

s was indicated ln Section 3, this case Is of particular interest in the 
theory of synchronization. Generalizing the results of Poincare [20:, Mal- 
kin established that the periodic solutions of the basic system of equations 
which transform into the generating solution for p = 0 may correspond only 
to those values of the parameters a, which satisfy a certain system of 
equations 

P, (Xl,..., up) = 0 (s = I,...#) (4.1) 

To each simple solution al= ob*, +..e ar = a,* of this system there indeed 
uniquely corresponds a periodic solution of the basic system of differential 
equations which is analytic in p and which for p = 0 goes into the gene- 
rating solution. 

Later, extensions were obtained or concrete methods of constructing the 
functions p, were indicated for various t es of systems of differential 
equations by Malkin [ 21 and 221, Shimanov 23 to 283, Merman 1291, Coddi - $ 
ton and Levinson [ 303, Bul 

f 
akov C313, Volk [ 321, Neimark C 331, Volosov 

Neimark and Shll’nikov [ 35 ,KolovsMl (363, Kushul C371 and Rodlnov [3 
$6, 

1. 
Likewise, in the work of Meman [a], and Shlmanov [23 bnd 261 and certain 
othc z authors particular cases were studied in which the solution of equa- 
tions (4.1) is not simple. For systems wlth one or two degrees of freedom, 
for p * 2 or p = 4, these cases were studied In detal.1 by Proskurlakov 
[ 39 and 403, and Plotnikova[ 41 and 421. 

The problem studied by the author In [3] on the synchronization of vlbra- 
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tors was an example of a concrete technological problem the solution of which 
immediately required a study of a case wherein the generating solution de- 
pended on p arbitrary parameters and the characteristic equation for the 
generating system and the generating solution had a p-fold root equal to 
unity (with simple elementary devlsors). In this paper it was shown that 
the study of the stability of periodic solutions for sufficiently small p 
may be reduced to the study of the signs of the real parts of the roots of 
an algebraic equation of the Pth degree (a,, is the Kroncker symbol). 

that is to the usual problem of Iiurwltz. 

In [433 a corresponding theorem on stability was proved for quasillnea: 
nonautonomous systems. A proof of a number of analogous theorems for peri- 
odic solutions of nonautonomous nonlinear systems was given in the monograph 
of Malkin [44). The case of quasilinear autonomous systems was examined in 
our note ~631, and a generalization to almost-periodic oscillations of quasi- 
linear systems with delay was given by Shimanov [453. Nohel C46] obtained 
certain of the results of our work [43 and 631 by means of some other argu- 
ments and also obtained a number of new theorems. 

In [47] It was noted that if there exists a function D (~1, . . . . or), 
that aD1 &j = -t)j(%, . . . . a,,, 

such 
then this function plays the same role ln the 

problem of periodic solutions that the potential enerzv plays in the oroblem 
of equilibrium positions, Stationary points of the f&&ion p may correspond 
to periodic solutions of the investigated type, whereas minimum points, ob- 
tained from an analysis of second order terms in the expansion of D, may cor- 
resoond to stable oeriodic motions. It was established in a number of cases 
that the functioni coincides in an average over a period with the value of 
kinetic potential of the system. This circumstance was noted for the first 
time in a particular case in a paper by Lavrov and the author [48]. 

In the paper by Bakhmutskil [49] It was shown that by modifying some of 
the arguments, the method of Polncare may be successfully applied to the 
study of the processes leading to the establishment of periodic solutions. 
Usually this is done by means of asymptotic methods [50]. In this connection, 
exactly the case of the presence of excited solutions of the type (3.3) was 
studied In ['cg] and it was established that In the initial approximation the 
parameters a 

c 
may, generally speaking, 

functions of 
be assumed to be slowly-varying 

lme which are determined from the system of the equations 

- = -& p, (a,, dt . . ., apI (s = 1, - . .) p) 

2. Study of individual classes of dyna- 
mic al systems by means of the theory of 
synchronization. The synchronization of weakly-coupled self- 
oscillating objects with almost uniform rotating motion was examined in [473 
and in more detail in the author's dissertation, submitted in 1962 to the 
M.I. Kalinin Polytechnic Institute in Leningrad. It was assumed that the 
motion of the system is described by Equations 

(s = 1, . . ., k) 

d t3L dL fl) 
xal,‘--ax, = Q,“-w& (r = 1, _ . ., Y) 

(W 

where 

and L = P - n is the Lagrangian, mr is a rotational generalized coordinate, 
xr is an oscillatory generalized coordinate, Q, and Q,"+ pQrtl)= Q, are 
generalized forces, I,, k, and w are positive constants, and u, = f 1 
It was als,J assumed that toe generating system corresponding to Equations 
(4.4) , had solutions of the type 
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where x," 
constants. 

are periodic functions of time t with period 2n/~1 and or are 

This class of problem includes problems of synchronization of mechanical 
vlbrators, automatic balancing, bending-torsional oscillations of shafts 
with disks, and likewise many problems of synchronization of electrical ma- 
chinery (see Section 1, Subsections 1 to 3 and 5). 

Under sufficiently general assumptions on the form of the functions L 
and Q it was shown that the functions p,, on which, in accordance with the 
above, depends the solution of the problem of existence and stability of 
synchronous motion, may be represented in the form 

(s = 1, . . l , k) (4.6) 

where 2x10 

A = A (a,, . . .( Uk) = z 
s 

[Ll dt 

0 

and the square brackets Indicate that the quantities included in them are 
to be for the generating solution. 

If, as is often the case, Q,O= 0 and 

(4,7) 

s=l j=l l-=l S=l 

where atJ, b and d are constants, 
and F, are pe%odic f&.'ctions of cp, 

4, are functions of ep, and cp * , 
with period 2r1 , then one may app i y 

c471 
2x/w 

Finally, if the last two terms in. Equations f4.6) can be represented as 
the derivatives with respect to o. of some function A , and if all of the 
k, are identical, then there exists a function p which was discussed in 
the previous subsection. 

In the above mentioned dissertation, the author also.studied the problem 
of synchronization of weakly coupled van der Pol oscillators. In the par- 
ticular case of two oscillators this problem was studied earlier by Minorski 
by other methods [51]. 

The problem of internal synchronization of almost identical autonomous 
objects under linear weak coupling was examined !n a paper by Nagaev [52]. 

3. Papers on the theory of synchroni- 
zation of specific machines. As far as concrete 
problems of synchronization are concerned, those considered in greatest de- 
tail are problems of the simultaneous parallel operation of a number of 
synchronous electrical machines (see footnote on page 249). Amonk the first 
investigations in this field one should mention the work of Ollendorf and 
Peters [533, tiylov and Bogollubov [ 163, Zhdanov and Lebedev [17], and Gorev 
[l%l. A detailed bibliography and a description of the present state Of 
this problem may be found in [54 to 561. 
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Because of its extreme complexity, many important aspects of the problem 
remain unstudied until the present day, notwithstanding the presence of 
numerous investigations in which a number of substantial results have been 
obtained. In particular, almost unexamined is the nons~etrical range of 
operation of machines In the general case in which transient phenomena are 
described by equations with periodic coefficients. 

The self-synchronization of two coupled relaxation oscillators (multi- 
vibrators) was studied by Rremzen and Falnberg [57]. They discovered a 
range of multiple synchronization and showed the possibility of oscillations 
in the coupled system in a case in which neither of the oscillators was ex- 
cited. 

Associated with the problem of synchronization of vacuum-tube oscillators 
is the related problem of the self-oscillations of coupled circuits, one of 
which is self-excited and the other of which is nonexcited. 
was already posed by van der Pol. 

This problem 
The first to examine It in a sufficiently 

rigorous formulation for the case of strong coupling between the circuits 
were Andronov and Vitt [58], and Sklbarko and Strelkov [59]. 

A study of corresponding case for weak coupling was carried out by Belliu- 
stin [60]. A mechanical analogue of the system indicsted.above, but with 
impulse excitation, was studied in a paper by Butenln [61] which was devoted 
to the solution of a problem by Kelvin from the theory of clocks. A system 
of a number of strongly coupled RLC circuits, one of which is excited, was 
examined by Gushchin C62] in connection with the theory of a dynamic flip- 
flop. 

The Huygens problem of the self-synchronization of pendulum clocks was 
studied by Minorski In the particular case of two clocks by means of the so- 
called stroboscopic method r511. The corresoondinz problem but for an arbi- 
trary number of clocks and in a more rigorous form&&ion (see Section 1, 
Subsection 4), was studied by us in 
of similarity theorems [ 633. 

tne dissertation menticned above by means 

Another group of papers consists of investigations of the theory of 
synchronization of mechanical vibrators. Paper [ 3) explained the phenomenon 
of self-synchronization of vibrators and studied the slmnlest case when the 
operating element of the machine has one degree of freedom in.all (see Sec- 
tion 1, Subsection 1). The more complicated problem of the self-synchro- 
nization of vibrators fixed to machines which contain a vibrating clement and 
which may perform arbitrary planar motion was studied by the author in [4 and 
51. The foundations'of the theory of forced electrical s~chron~zat~on~ and 
also synchronization by means of the introduction of elastic elements between 
the rotors of the vibrators, was studied in El1 and 643. Investigations [48 
and 651 were devoted to an integral test for stability of motion in problems 
of self-synchronization of vibrators. 
was given in [47]. 

A further generalization of this test 
In the paper of Shekhter 1661 the problemofself-synchro- 

nlzation of vibrators In machines with a two degree of freedom vibrating 
element,was studied in connection with the installation of vibrationally 
sunk shells. Applications of the theory of svnchronization of vibrators to 
the dynamics oft crushing and grinding m&chines, transport apparatus, &d to 
certain other vibrating machinery was examined In [5, 7, 67 and 683, and 
likewise in the indicated dissertation of the author. 

In the paper by Lavrov [70], the problem of the synchronization of vibra- 
tors fixed to a free rigid body was studied. In this connection, a case was 
examined in which among the vibrators there were so-called rocking vibrators. 

In the monograph 1713 Ragul'skis studied a number of 6 stems with self- 
synchronized vibrators, among them the simplest case of multiple self-synchro- 
nized vibrators and self-synchronization in the presence of shock. A com- 
plicated system with shocks in which oscillations are excited by two self- 
synchronized vibrators was studied in connection with the theory of vibra- 
ting jaw crushers by Nagaev 1721. 

Problems of automatic balancing and of bending-torsional oscillations of 
a rotating shaft with unbalanced disks which, in accordance with the ore- 
sentatlon in Section 1, may be considered'as-problems of synchronization 
were studied by the author In the above-mentioned dissertation. In another 
formulation and by means of other methods the first of these problems was 
studied earlier by Detinko [15]. 
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A degenerate class of problems in the theory of synchronization are so- 
called capture problems in which essentially externally excited synchro- 
nization of a single unique self-oscillating ob.ject is involved. Work on 
the theory of capture due to vah der Pol i73], -Appleton [74] ,and Andronov 
and Vltt [58) and their numerous successors played an important role in the 
development of the genera1 theory of nonlinear oscillations. 

In the category of capture phenomenon one may place the peculiar effect 
of excitation and sustenance of rotation of an unbalanced rotor by means of 
oscillation of its axis. This effect was studied by Bogoliubov [75], after- 
wards by the author [6] and later by Barkan and Shekhter 1763, Gortinskii 
C771, Caughey C 781, and Ragul ‘skis [ 711. The connection of this effect with 
the phenomenon of self-synchronization was established by us in [4]. 

Among problems in the theory of synchronization which have not been com- 
pletely resolved up to the present time, we mention problems of synchro- 
nization In systems with discontinuous characteristics (in particular, the 
problem of synchronization of vibrators In systems with impulses), problems 
of multiple synchronization, the problem of synchronization for system with 
distributed parameters. question of sunchronlzation (self-ornanization) of 
biological a&other obje&s, generally speaking, of nondynamzcal charakter, 
problems of finding %egions of attraction” of synchronous motions in the 
phase space of the-system, and questions of the ialidity of the transition 
from the study of problems of autonomous (Internal) synchronization to prob- 
lems of nonautonomous (external) synchronization (see Section 2). 

In conclusion we mention the following. In the overwhelming majority of 

problems studied on Internal synchronization of weakly-coupled self-oscil- 

lating objects, the corresponding system of differential equations, as a 

rule, allowed of at least one stable periodic solution (that Is, synchro- 

nization took place), only if there were sufficiently small differences be- 

tween the partial frequencies or the angular velocities. This confirms the 

fact that the tendency toward synchronization is a general regularity of 

behavior of interconnected material objects. 

In addition, synchronization sometimes takes place, notwithstanding the 

weakness of the connections, even In the face of the existence of differences 

in partial frequencies and in other parameters of the separate objects [4 

and 51. 

BIBLIOGRAPRY 

1. Huygens , Ch, , Trl memuara po mekhanike (Three memoirs on mechanics). 
Transl. edited and annotated by Prof. K.K. Raumgart, Izd. Akad. Nauk 
SSSR, pp. 30-31, 1951. 

2. Strutt, J.B. (Lord Rayleigh), Teorlia zvuka (Theory of sound). 
Gostekhizdat, M.-L., Vol.2, pp. 218-219, 1944. 

3. Blekhman, 1.X., Samosinkhronizatsiia vlbratorov nekotorykh vibratsion- 
nykh mashin (Self-synchronlzatlon of the vibrators of certain vibra- 
ting machines). Rngng.Rev., ~01.16, 1953. 

4. Blekhman, I.I., 0 samosinkhronizatsil mekhanicheskikb vlbratorov (On 
self-synchronization of mechanical vibrators). Izv.Akad.Nauk SSSR, 
OTN, I 6, 1958. 

5+ Blekhman, I.I., Teoriia samosinkhronizatsii mekhanicheskikh vibratorov 
I ee prllozhenlia (Theory of self-synchronization of mechanical vibra- 
tors and its applications). Proc.of 2nd All-Un.Congr.on fundamental 
probl.in the theory of Machines and Mechanisms. Uynam-l.cs of Machines. 
Mashgiz, 1960. 



The problen of synchronltatfon of dynamical systems 261 

6. Blekhman, I.I., Vrashchenie neuravnoveshennogo rotora, obuslovlennoe 
garmonicheskimi kolebaniiami ego 081 (Rotation of an-unbalanced rotor 
dependent on harmonic oscillations of its axis). Izv.Akad.Nauk SSSR, 
CTN. tg 8, 1954. 

7. B1ekhman, I.I., Rudin, A.D. and Rundkvist, A.K., Ob uslov1iakh dvizhe- 
nlla s obkatkoi drobiashchikh tel v vlbratslonnykh drobil'no-izmel'- 
chltel'nykh mashinakh (On the conditions of motion of rolling cruchers 
In vibrating crushing- ulverizi 
(Concentration of ores 

'j, I$ machinery). Obogashchenie rud 
EIp3,l 1. 

8. Fagerberg, B., New vibrating screen improves iron ore processing. 
&gng. and Nining 3., July, 1960. 

9. Grinberg, A.P., Metody uskoreniia zariazhennykh &a&its (Methods of 
acce1erating charged particles). Gostekhlzdat, MrL., 1950. 

10. Novosel'skii, PI., Borshchevskii, A.B. and Sll'vanovich, V.N., Sinkhron- 
no-sinfaznyi privod debalansnykh vibroploshchadok (Synchro-cophasal 
gear of an unbalanced vibrating platform). Stroitel'noe i dorozhnoe 
mashlnostroenie, W 5, 1956. 

11. Blekhman, I.I., Dinamika privoda vibratsionnykh mashin so mnogimi sin- 
khronnymi mekhanicheskimi vibratorami (Dynamics of the driving gear 
of synchronous machinery with many mechanical vibrators). Isv.Akad. 
Nauk SSSR, OTN, Mekhanika 1 mashinostroenle, N3r 1, 1960. 

12. Wiener, N., Novye glavy kibernetiki (New chapters In cybernetics). 
Sovexkoe radio, 1963. 

13. Thearle, EL., 
g-11, 1950. 

Automatic dynamic balancers. Machine Design, Vo1.22, 

14. Panovko, Ia.G., Osnovy prikladnoi teorii uprugikh kolebanii (Funda- 
mentals of the applied theory of elastic oscillations). Mashgiz, 1957. 

15. Detinko, F.M., Ob ustoichivosti raboty avtobalanslra dlia dinamicheskol 
balansirovki (On the stability of operation of a self-balancer for 
dynamic balancing). 
stroenie, t@ 4, 1959. 

Izv.Akad.Nauk SSSR, OTN, Mekhanika i mashino- 

16. Krylov,N.M. and Dogoliubov, N.N., 1. 
mashin. 

0 kolebaniiakh $1~0~~ 
2. Ob ustoichivosti parallel'noi raboty n sin~ro~~ mashin 

(1. On oscillations of synchronous machinery. 2. On the stability of 
the parallel opetiation of n-synchronous machines). O~~~GO~DAV, 
Khar'kov - Kiev, 1932. 

17. Zhdanov, P.S., Ustolchivost elektricheskikh sistem (Stability of 
electrical systems). Gosenergoizdat, 1948. 

18. Gorev, A.A., Izbrannye trudy po voprosam usto.ichlvosti elektricheskikh 
sistem (Selected papers on problems of stability of electrical sys- 
tems). Gosenergoizdat, M.-L., 1960. 

19. Malkin I.G., 
nil 

Metody Liapunova 1 Puankare v teoril nelineinykh koleba- 
[Methods of Liapunov and Poincare in the theory'of oscillations). 

Gostekhlzdat, M.-L., 1949. 

20. Polncare, H., Les methodes nouvelles de,la mecanlque celeste. Paris, 
Gauthler-Villars, Vol.1, 1892; Vol.11, 1893; Vol.111, 1899. 

21. Malkin, I.G., K teorii kolebanii kvazilineinykh sistem so mnogimi ste- 
penlami svobody (On the theory of oscillations of quasilinear systems 
with many degrees of freedom). PMM Vo1.14, No 4, 1950. 

22. Nalkin, I.G., 0 pochti perlodicheskikh kolebanliakh nelineinykh neavto- 
nomnykh sistem (On almost periodic oscillations of nonlinear, non- 
autonomous systems). PMH ~01.18, WP 6, 1954. 

23. Shimanov, S.N., K teorii ~azigarmoniches~~ kolebanii (On the theory 
of quasiharmonic oscillations;. PMM vo1,16, HP 2, 1952. 

24. Shimanov, S.N., K teorii kolebsnii kvazlfineinykh sistem (On the theory 
of oscillation OS quasilinear systems). PN# ~01.18, NP 2, 1954. 



1.1. Blekhman 

25. Shlmanov, S.N., Ob odnom sposobe polucheniia uslovil sushchestvovaniia 
Perlodicheskikh reshenli nelineinykh sistem (On one method of obtain- 
ing conditions for the existence of periodic solutions of nonlinear 
systems). PMX vo1.19, I2, 1955. 

26. Shimanov, S.N., Kolebaniia kvazilineinykh sistem s neanaliticheskoi 
kharakteristikoi nelineinostl (Oscillations of quasilinear systems 
with nonanalytic characteristics of nonlinearity). p~,y V01.21, R 2, 

1957. 

27. Shimanov, S.N., K teorii kolebanii kvazilineinykh sistem s zapazdyva- 
niem (On the theory of oscillation of quasilinear systems with delay). 
PMM Vo1.23, NP 5, 1959. 

28. Shimanov, S.N., 0 pochti periodicheskikh kolebaniiakh v nelineinykh 
sistemakh s zapazdyvaniem (On almost periodic oscillations in non- 
linear systems with delay). Dokl.Akad.Nauk SSSR, Vol.125, NC 6,ig5g. 

29. Merman, G.A., Novyi Mass perlodicheskikh reshenii v ogranichennoi za- 
daehe trekh tel I v zadache Khilla (A new class of periodic solutions 
In the restricted three-body problem and in the Hill ‘problem). Trud. 
Inst.teor.Astr., No= 1, 1952. 

30. Coddington, E.A. and Levinson, N., 
nykh uravnenii (Theor 

Teoriia oby~ove~y~ differentsial" 
of ordinary differential equations). Transl. 

from &glish, IL, 195 B . 

31. Bulgakov, N.G., Kolebaniia kvazilineinykh avtonomnykh sistem s mnogimi 
stepeniami svobody i neanallticheskoi kharakterlstikoi nelineinostl 
(Oscillations of quasilinear autonomous systems 'with many degrees of 
freedom and nonanalytic characteristics of nonlinearity). PMM Vo1.19, 
@ 3, 1955. 

32. Volk, X.M., Ob odnom klasse avtokolebatel'nykh sistem (On a class of 
self-oscillating systems). Dokl.Akad.Nauk, Vol.llO, I 2, 1956. 

33. Neimark, Iu.I., Metod tochechnykh otobrazhenii v teorii nelineinykh 
kolebanli (The method of point reflections in the theory of nonlinear 
oscillations). I, 11 
HpNQl, 2, 5 and 6, 1956. 

III, Izv.vyssh,uchebn.zaved., Radlofizika, 

34. Volosov, V.M., 0 resheniiakh nekotorykh vozmushchennykh sistem v okrest- 
nosti perlodlcheskikh dvlzhenii (On the solutions of certain perturbed 
systems in the neighborhood of periodic motions). Dokl.Akad.Nauk SSSR, 
v01.123, P 4, 1958. 

35. Nelmark, Iu.1. and Shil'nlkov, L.P., Oprlmenenil metoda malogo parametra 
k sistemam differentslal'nykh uravnenii s razryvnymi pravymi chastiami 
(On the application of the method of small parameters to s stems of 
differential equations with discontinuous right-hand sides '5 . Izv.Akad. 
Nauk SSSR, OTN, Mekhanlka f mashinostroenie, NQ 6, 1959. 

36. Kolovskii, M.Z., 0 primenenii metoda malogo parametra dlia opredeleniia 
razryvnykh periodichesklkh reshenii (On the application of the method 
of small 

7 
arameters to the determination of discontinuous periodic 

solutions . Dokl.na Mezhd.slmpoziume po nellnelnym kolebaniiam, 
Kiev, 1961 (Paper given at the International Symposium on nonlinear 
oscillations, Kiev, 1961). 

37. KuShul', M.Ia., 0 kvazigarmonlchesklkh sistemakh, bllzkikh k sistemam s 
postoiannymi koeffltsientam1, u kotorykh chisto mnlmye kornl funda- 
mental'nogo uravneniia imeiut neprostye elementarnye deliteli (On 
quasilinear systems, close to systems with constant coefficients,for 
which the pure imaginary roots of the fundamental equation have non- 
simple elementary divisors). P&V V01.22, @ 4, 1958. 

38. Rodionov, A.M., Kvazilineinye sistemy s otklonia~ushch~msia argumerltom 
neitral'nogo tipa (Quasilinear systems with a deflection argumerlt of 
neutral type). p,yjf Vo1.24, Np 6, 1960. 

39. Proskuriakov, A-P., Postroenie periodicheskikh reshenli avtonomnykh 
sistem s odnoi stepen'lu svobody v sluchae prolzvol'nykh veshchest- 
vennykh kornei uravnenila osnovnykh amplltud (COnStrUCtiOn of Periodic 
solutions of autonomous systems with one degree of freedom in the case 
of arbitrary real roots for the equation of the fundamental amPlitudes). 
p,q~ Vo1.22, Ng 4, 1958. 



0. Proskuriakov, A.P., Kolebaniia kvazilineinykh neavtonomnykh sistem s 
odnoi stepen'iu svobody vblizi rezonansa (Oscillations in the neighbor* 
hood of resonance of quasilinear nonauto~,~mous systems with one degree 
of freedom). PM vo1.23, @ 5, 1959. 

41. Plotnikova, G.V., 0 postroenii perlodlchesklkh reshenii neavtonomnol 
kvazillnelnol sistemy s odnoi stepen'lu svobody prl rezonanse v slu- 
chae dvu~~atny~ kornei uravnenii osnovnykh amplitud (Gn the con- 
struction of periodic solutions of a nonautonomous quasilinear system 
with one degree of freedom under resonance and in the case of a two- 
fold root of the equation for the fundamental amplitudes). P,YM Vo1.26, 
@ 4, 1962. 

42. Plotnlkova, G.V.. K postroenliu periodicheskikh reshenii neavtonomnoi 
kvazilineinoi slstemy sdvumia stepeniamisvobody (Gn the construction 
of periodic solutions of nonautonomous quasilinear systems with two 
degrees of freedom). PMM Vo1.27, Ng 2, 1963. 

43. Blekhman, I.I., K voprosu ob ustoichivosti periodlcheskikh reshenii 
kvazilineinykh neavtonomnykh sistem so mnogimi stepeniami svobody 
(On the auestlon of the stability of periodic solutions of auasilinear 
~onauton~mous systems with many degrees of freedom). Do~.~kad.~a~ 
SSSR, Vol.104, Ng 6, 1955. 

44. Malkln, I.G., Nekotorye zadachi teorii nelinelnykh kolebanii (Some prob- 
lems in the theory of nonlinear oscillations). Gostekhizdat, 1956. 

45. Shimanov, S-N., 0 pochti per~odicheski~'koleban~i~h kvazifinelnykh 
sistem s zapazdyvaniem vremeni v sluchae vyrozhdeniia (On almost 
periodic oscillations of quasilinear systems with time delay in the 
case of degeneration). Dokl.Akad.Nauk SSSR, Vo1.133, !R 1, 1960. 

46. No&l, J-A., Stability of perturbed periodic motions. Jreine und 
angew.Math., v01.203, No 1/2, 1960. 

47. Blekhman, I.I., Integral'nyi kriterii ustoichivosti periodicheskikh 
dvlzhenll nekotorykh slstem i ego prllozheniia (Integral criteria of 
stability of periodic motions of certain nonlinear systems and their 
applications). Dokl.na Mezhd.simpozi~e po nelineinym kolebaniiam, 
Kiev, 1961 (Paper presented at the International S 
linear oscillations, Kiev, 1961.). 
the symposium), Vo1.2, 1963. 

(!I!r. 
poslum on non- 

simpozluma (Proceedings of Y 

48. Blekhman. I-1. and Lavrov, B.P., Ob odnom intenral'nom uriznake ustoi- 
chivosti dvizheniia (On-an integral test for-the stability of motion). 
PM% Vo1.24, N! 5, 1960. 

49. Bakhmutskii, V.F., K issledovaniiu protsessov ustanovlenila kolebanii 
v nelinelnykh slstemakh so mnogiml stepeniaml svobody (On the lnvesti- 
gation of steady oscillation processes in nonlinear systems with many 
degrees of freedom). 
stroenie, R 2, 1962, 

Izv.Akad.Nauk SSSR, #IN, Mekhanika 1 mashino- 

50. Bogoliubov, N.N. and Mitropol'skii, Su.A., Asimptoticheskie metody v 
teorli nelineinykh kolebanii (Asymptotic methods In the theory of 
nonlinear oscillations). Fizmatgiz, 3rd Edition, 1963. 

51. Minorskii, N-O., Sinkhronizatsii (S~chronization). Dokl.na Mezhd. 
Simpozi~e po nelineinym kolebaniiam, Kiev, 1961 (Paper given at the 
International Symposium on nonlinear oscillations, Kiev, 1961). 

52. Nagaev, R.F., 0 vnutrennei sinkhronlzatsil pochtl odlnakovykh dlmami- 
cheskikh ob'ektov pod deistviem slabykh lineinykh sviazei (On internal 
synchronization of almost identical dynamical objects under the action 
of weak linear constraints). p,4@ Vo1.28, R? 2, 1964. 

53. Ollendorf, F. and Peters, W., Schwingungstabilitat parallelarbeitender 
Synchronmaschinen. Wissenschaftliche Veroffentlich en aus dem 
Slemens-Konzern., Springer, 1925-1926, ~01.6, pp.7- 3. 

54. Kimbark, E., Sinkhronnye mashiny I ustoichlvost' elektricheskikh sistem 
(Synchronous machines and the stability of electrical systems). 
Gosenergolzdat, M.-L., 1960. 



264 1.x. Bll?W!man 

55. Xartvelishvili, N.A., Vliianie vzaimodeistviia gidravlicheskikh, mekha- 
nicheskikh i elekticheski~ protsessov na ustoichivost' raboty elek- 
trostantsii (The effect of the interaction of hydraulic, mechanical 
and electrical processes on the stability of operatipn of electrical 
power stations). Izv.Akad.Nauk SSSR, OTN, Ne 2, 1958. 

56. Venikov, V.A., Rezhim 1 ustoichivost' na Mezhdunarodnoi konferentsii 
(SIGRE)(Operatlonal conditions and stability at the international 
conference)(SIGRE). Electrical power stations, NC 3, 1961: 

57. Bremzen, A-S. and Fainberg, I.S., Analiz raboty dvukh sviazannykh re- 
laksatsionnykh generatorov (Analysis of the operation of two coupled 
relaxation oscillators). J.tech.Phys.Moscow, Vol.11, NE 10, 1941. 

58. Andronov, A.A. and Vitt, A.A., K natematicheskoi teorii avtokolebatel'm 
nykh sistem s dvumia stepeniami svobody (On the mathematical theory 
of self-oscillating systems of two degrees OS freedom). J.tech.Phys. 
Moscow, Vol.4, N9 1, 1934. 

59. Skibarko, A.P. and Strelkov, S.P., Kachestvennoe issledovanie protsessov 
v generatore po slozhnoi Scheme (Qualitative investigation of the 
processes in an oscillator with complex network). J.tech.Phys.Woscow, 
vo1.4, @l, 1934. 

60. Belliustin, S.V., K teorii dvukh slabo sviazannykh konturov (On the 
theory of two weakly-coupled circuits). Uchen.Zap.Gor'k.Uriiv., NO 12, 
1939. 

61, Butenin, N-V., Ob odnoi zadache Kel'vina, otnosiashcheisia k teorii 
chasov (On a problem of Kelvin, relating to the theory of -locks). 
J.exp.theor.Phys., Vol.10, Ne 11, 1940. 

62. Gushchln, M.,N., Ob ustoichivosti kolebatel'nykh komponent v a%tokoleba- 
tel'noi sisteme so mnogimi stepeniami svobody pri asinkhrannom soot- 
noshenli chastot (On the stability of the oscillation componrnts in 
a self-oscillating system with many degrees of freedom in the pre- 
sence of an asynchronous frequency relationship). Vestn.MGU, Ser.3, 
Fizika i astronomiia, NP 2, 1960. 

63. Blekhman, I.I., Ob ustoichivosti periodicheskikh reshenii kvazilineinykr: 
avtonomnykh sistem so mnogimi stepeniami svobody (On the stability of 
periodic solutions of quasilinear autonomous systems with many degrees 
of freedom). Dokl.Akad.Nauk SSSR, Vol.;ll2, Ne 2, 1957. 

64. Blekhman, I.I., Sovmestnaia rabota neskol'kikh sinkhronnykh mekhaniche- 
sklkh vibratorov (Joint operation of several synchronous mechanical 
vibrators). Trud.Inst.Mashinoved.Akad.Nauk SSSR. Seminar po teorii 
mashin i me~~izmov (Seminar on the theory of machines and mecha- 
nisms). Vo1.21, I@N983 and 84, 1961. 

65. Blekhman. 1.1.. Obosnovanie intenral'nogo priznaka ustoichivosti dvi- 
zhenila I zadachakh o samosinkhronlzatsii vibratorov (Justification 
of an integral test for stability of motion in the problems of self- 
synchronization of vibrators). p,tfft Vo1.24, NO 6, 13bO. 

66. Shekhter, O.Ia., 0 pogruzhenii tiazhelykh zhelezobetonnykh obolochek 
(On the settlement of heavy reinforced concrete shells). Dinamika 
gruntov, Collection @ 44, Gosstroiizdat, 1961. 

67. Blekhman, I.I., 0 kriticheskoi shcheli vibratsionnoi rolikovoi melnitsy 

t 
On the critical gap of a vibrating roll mill). Obogashchenie rud 
Concentration of ores). NO 1, 1961. 

68. Rundkvist, A.K., Blekhman, I.;. and Rudln, A.D., K teorii kriticheskoi 
shcheli lnertsionnykh drobil'no-izmel'chitel'nykh mashin. (On the 
theory of a critical gap in inertial crushing-pulverizlng machines). 
Obogashchenie rud (Concentration of ores), Ng 2, 1961. 

69. Blekhman, I.I., Issledovanie rezhimov ustanovleniia samosinkhronizatsii 
mekhanichesklkh vibratorov metodom skorostnoi kinos"emki (Investi- 
gation of the regime of stationary self-synchronization of mechanical 
vibrators by the method of rapid cinematography). Nauch.-tech.inform. 
Bull.Leningr.pol.itekhn.Inst.im. M.I.Kalinina, Ng 2. Primenenie spe- 
tsial'nykh vldov kinos"emki v nauchnykh issledovaniiakh. L., 1960. 



70. Lavrov, B,P., Prostranstvennala zadacha o si~on~zats~l mekhaniche- 
sklkh vlbratorov (Three-dimensional. problem of synchronization of 
mechanical vibrators). Izv.Akad.Nauk SSSR, GTN, Mekhanika I mashlno- 
stroenle, I5, 1961. 

71. Ragul'skls, K.M., Mekhaniz 
namikl i ustolchlvostl), "i 

na vlbrirulushchem osnovanll (voprosy dl- 
Mechanisms on vibrating foundatlcns 

~~~~~~k~f dynamics and stabiflty)). Izd.Inst.energetlkl i ele- 
. Akad.Nauk Llt,SSR, Kaunas, 1963. 

7 '2. Nagaev, R.F., Dinamlka vibroudarnol drobllkl s parol samoslnkhronizl- 
rulushchikhsla vibratorov (Dynamics of a crusher with a pair of self- 
synchronizing vibrators). Izv.Akad.Nauk SSSR, CTN, Mekhanlka i mashl- 
nostroenle, w 5, 1963. 

73. Van der Pal, B., Nellnelnala teorlla elektricheskikh kolebanll (Non- 
linear theory of electrical oselllatlons). Svlaz'lzdat, 1935. 

74. Appleton, E.V., The automatic synchronization of the trlode oscillator. 
Proc.Cambrldge Philos.Soc. (Math, 8.nd Phys. Sciences). Vo1.21, 1922. 

75. Eogoliubov, N.N., 
of perturbations 

Teorlla vozmushchen~lv nelinelnol mekhanlke (Theory 
In nonlinear mechanics). Sb.tr.In-ta strolt.mekh. 

Akad.Nauk SSSR, Ns; 14, 1950. 

76. Shekhter, O.Ia., Ob odnom primere sub armon~chesk~~ kolebanli (On 8.n 
example of subharmonic oscillations e; . Tr.Soveshch.vo orlmenenliu vib- 
ratsll pri ustroistve osnovanll sooruzhenll I burenll*skvazhin v stro- 
ltel'nykh tseliakh. L., 1959. 

77. Gortlnskli, V.V., Ob uslovllakh vrashcheniia inertslonnogo raspredell- 
tella mel‘nlchnykh rassevov (On the conditions of rotation of an ln- 
ertial dlstrlbuter of milled seed). Tr.Inst.mashlnoved.Akad,Nauk SSSR, 
Seminar po teorii mashin I me~an~zmov (Seminar on the theory of ma- 
chines and mechanisms). ~0101.18, W 72, 1959. 

78. Caugtxejr, T.L., Hula-hoop: 
Amer.J.Phys., 

One example of heteroparametrlc excitation. 
~01.28, ta 2, 1960. 

‘19. Blekhman, I.I., Vlbratslonnye mashiny s mekhanlcheskiml vozbudltellaml 
kolebanii (Vibrating machines with mechan~;a~tosclIlatlon exciters). 
Primenenie vibrotekhnlki v gornom dele. . ., Gosgortekhlzdat,1960. 

Translated by E.E.E. 


